Line integral methods which preserve all invariants of conservative problems

نویسندگان

  • Luigi Brugnano
  • Felice Iavernaro
چکیده

Recently, the class of Hamiltonian Boundary Value Methods (HBVMs) has been introduced with the aim of preserving the energy associated with polynomial Hamiltonian systems (and, more in general, with all suitably regular Hamiltonian systems). However, many interesting problems admit other invariants besides the Hamiltonian function. It would be therefore useful to have methods able to preserve any number of independent invariants. This goal is achieved by generalizing the line-integral approach which HBVMs rely on, thus obtaining a number of generalizations which we collectively name Line Integral Methods. In fact, it turns out that this approach is quite general, so that it can be applied to any numerical method whose discrete solution can be suitably associated with a polynomial, such as a collocation method, as well as to any conservative problem. In particular, a completely conservative variant of both HBVMs and Gauss collocation methods is presented. Numerical experiments confirm the effectiveness of the proposed methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Line Integral Methods able to preserve all invariants of conservative problems

Recently, the class of Hamiltonian Boundary Value Methods (HBVMs) [1] has been introduced with the aim of preserving the energy associated with polynomial Hamiltonian systems (and, more in general, with all suitably regular Hamiltonian systems). However, many interesting problems admit other invariants besides the Hamiltonian function. It would be therefore useful to have methods able to preser...

متن کامل

Recent Advances in Geometric Integration

We provide a self-contained introduction to discrete line integral methods, a class of energy-conserving Runge-Kutta methods recently devised for the numerical solution of Hamiltonian problems [1]. The basic idea on which the methods rely on will be fully discussed, along with a corresponding novel framework for the analysis of the methods [2]. The class of energy-conserving Runge-Kutta methods...

متن کامل

Structure-preserving Exponential Runge-Kutta Methods

Exponential Runge-Kutta (ERK) and partitioned exponential Runge-Kutta (PERK) 4 methods are developed for solving initial value problems with vector fields that can be split into con5 servative and linear non-conservative parts. The focus is on linearly damped ordinary differential 6 equations, that possess certain invariants when the damping coefficient is zero, but, in the presence of 7 consta...

متن کامل

‎Solving Some Initial-Boundary Value Problems Including Non-classical ‎C‎ases of Heat Equation By Spectral and Countour Integral ‎Methods‎

In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...

متن کامل

Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation

Abstract. We construct, analyze and numerically validate a class of conservative, discontinuous Galerkin schemes for the Generalized Korteweg-de Vries equation. Up to round-off error, these schemes preserve discrete versions of the first two invariants (the integral of the solution, usually identified with the mass, and the L–norm) of the continuous solution. Numerical evidence is provided indi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 236  شماره 

صفحات  -

تاریخ انتشار 2012